Microbial and additive formulations for enhanced bioremediation and biotreatments by the BIOSURFACTANTS producer strain Rhodococcus sp. HFO180-S2B (réf. Collection Madep N° TB-4058)

Dr Fabrizio Beltrametti (CEO)

Actygea S.r.l.

via R. Lepetit 34 21040 Gerenzano (Italy) T +39 02 96474 1 email: info@actygea.com

Integrated Biotechnological Solutions for Combating Marine Oil Spills

MADEP SA

This project is supported by the European Union under the Food, Agriculture and Fisheries and Biotechnology theme of the 7th Framework Programme for Research and Technological Development under GA no. 312139

Dr Trello Beffa (CEO)

MADEP S.A. Z.i. Maladières 22 CH-2022 Bevaix (Switzerland) T +41 (0)32 846 45 51 email: info@madep-sa.com

Rhodococcus sp. HFO180-S2B (Madep) Biosurfactants and their applications

- Biosurfactants can be defined as surface-active biomolecules produced by microorganisms with a wide-range of applications.
- When compared to chemical or synthetic surfactants, biosurfactants gained several advantages including their biodegradability and ecological biocompatibility.
- Due to their unique functional properties, biosurfactants were used in several industries including :
 - ✓ organic chemicals,
 - ✓ petroleum and petrochemicals,
 - ✓ mining and metallurgy (mainly bioleaching),
 - ✓ agrochemicals and fertilizers,
 - ✓ foods and beverages,
 - ✓ cosmetics and pharmaceuticals,
 - ✓ and many others....
- They can be used as emulsifiers as well as de-emulsifiers, wetting agents, foaming agents, spreading agents, functional food ingredients and detergents.
- The biosurfactants can be used in **environmental cleanup** by biodegradation and detoxification of industrial effluents and in **bioremediation** of contaminated soil.

Rhodococcus sp. HFO180-S2B (Madep) Colonies of the strain on solid medium

 The strain Rhodococcus erythropolis HFO-S2B (MADEP) has excellent abilities to solubilize (by biosurfactants production) and to degrade HFO-180 and DANSK crude oils.

Colonies of HFO-S2B on TSA (Tryptone Soya Agar, after 3-4 days)

Rhodococcus sp. HFO180-S2B (Madep) **Pysiological properties**

Physiological parameters tested	Results
Growth temperature	5°C to 37°C
PH growth	(optimum 20-30°C) 5 to 9 (optimum 7 to 8,2)
Anaerobic growth	No
Growth on basal mineral medium + 33 g NaCl + 1-20g / l simple	Good
organic compounds (lactate, dextrose, glycerol)	
Growth and degradation of various types of vegetable oils (colza	Good
or rapeseed, soybean, olive, coconut, linseed, sunflower, nut,	
peanut, grape seed, sesame, safflower).	
Degradation and solubilization of heating oil and dielectric oil.	Good
Solubilisation of PAH's (chrysene, benzo-a-pyrene, benzo-a-	Good
anthracene) and PCB (Aroclor 1260)	
Binding capacity (biofilm formation) on Kaldnes K1 Media	Good

Rhodococcus sp. HFO180-S2B (Madep) Strong solubilization of PAH's, PCB and dieletric oil

Biomass inoculated at startup : 10-20 millions CFU HFO-S2B/ml.

(Cells taken from a petri dish, Typtone Soya Agar medium).

ACTYGEA

<u>Medium and pollutants</u> : Mineral basal medium with 1 g/l of PCB or Aroclor 1260, chrysene, benzo(a)pyrene, benzo(a)anthracene, and 5 g/l of dielectric oil.

Incubation : Under magnetic stirring 250 rpm, at 20°C during 14 days for PCB, chrysene, benzo(a)pyrene, benzo(a)anthracene, and 5 days for dielectric oil.

Rhodococcus sp. HFO180-S2B (Madep) Very speed solubilization of heating oil

<u>Biomass inoculated at startup</u>: 100-120 millions CFU strain HFO-S2B/ml (Cells taken from a petri dish, Typtone Soya Agar medium).

<u>Conditions + polluant</u> : Basal mineral medium + 10 g/l heating oil.

Incubation : Under magnetic stirring 750 rpm, at 20°C during 4 hours.

WITHOUT strain HFO-S2B

WITH strain HFO-S2B

Rhodococcus sp. HFO180-S2B (Madep) Very speed washing heating oil from soil

Stirring time (min) 0,5 Kg soil +	Residual HC in washed soil (Index C10-C40, ppm)	Residual HC in washed soil (Index C10-C40, ppm)
1 l tap water	WITHOUT strain HFO-S2B	WITH strain HFO-S2B
0	3'150 (0 %)	3'150 (0 %)
5	3'030 (6 %)	1'020 (69 %)
15	3'010 (7 %)	602 (82 %)
30	2'980 (8 %)	555 (83 %)
60	2'955 (8 %)	490 (85 %)

- In brackets the % oil washed.
- HC = total hydrocarbons (heating oil).
- Tests carried out on thin part of soils (sieved to 0.2 mm).
- <u>Biomass used</u>: culture of *Rhodococcus* fournished by the partner ACTY produced under biosurfactants conditions/medium (Ref. Actygea Lot # Acty HFO2B-351/001, at 1.2 x 10⁹ CFU/ml).
- Biomass added to soils : 4 x 10⁷ CFU HFO-S2B/g soil.

Rhodococcus sp. HFO180-S2B (Madep) Growth in different production media

Rhodococcus sp. HFO180-S2B (Madep)

Applications : Emulsification of Solvents and Oils

ACTYGEA

Medium	El ₂₄ (%) * hexadecane	El ₂₄ (%) * Crude oil
ACTY 340	61	75 +/- 1.4
ACTY 333	63	76 +/- 0.6
ACTY MP1968	68	97 +/- 4.9

El₂₄(%) in danish crude oil

KENTON

Acty 340

101 340.

culture

07340

medium (blank)

culture

KTY 333

(blank)

Rhodococcus sp. HFO180-S2B (Madep) **Applications : Emulsification of Solvents and Oils**

*EI*₂₄(%) in Danish crude oil <u>Stability of emulsion POST sterilization (39 days/20°C)</u>

	BT
	POST-
	STER
El24 (%)	87,0 % +/- 1.51

Rhodococcus sp. HFO180-S2B (Madep) Applications: Production of surface active biomolecules – MS analysis (in collaboration with CSIC – Madrid)

MADEP SA

Rhodococcus sp. HFO180-S2B (Madep) **Applications : Crude oil degradation**

BIOMASS/ H2O + danish crude oil (<u>30 days</u> incubation)

BIOMASS/ H2O + danish crude oil Pre-centrifugation

BIOMASS/ H2O + danish crude oil Post-centrifugation

Viability of the strain (at 30 days in crude oil)

Crude oil residue <u>15%</u>

Rhodococcus sp. HFO180-S2B (Madep) Applications : Crude oil degradation

ACTYGEA

PARAMETERS: MEDIUM: ACTY 333 AGE CULTURE: 120h BIOMASS = BIOMASS 125 g/L CRUDE OIL = 50 g/LINCUBATION: 28°C/200 RPM

*LIGHT CRUDE OIL (DANISH) **HEAVY CRUDE OIL (HFO)

Time (days)

Rhodococcus sp. HFO180-S2B (Madep) The goal of ACTYGEA and MADEP

The goal of ACTYGEA and MADEP is to transfer the biosurfactantcapabilities (*) of the strain *Rhodococcus* sp. HFO180-S2B into innovative formulations for environmental and industrial bioprocesses and applications.

(*) These biosurfactants have both hydrophilic and hydrophobic regions.

Already available for :

- Industrial fermentation protocols to produce large quantities of the strain HFO180-S214B (ACTYGEA and MADEP).
- Addition of the strain HFO180-S2B to contaminated sites (soils, wastewater, leachates,...) for the improvement of solubilisation, bioavailability and biodegradability of hydrophobic pollutants, such as Crude Oils, PAHs, PCB, ... (MADEP and ACTYGEA).

Kill•Spill - Integrated Biotechnological Solutions for Combating Marine Oil Spills

Project co-funding by the European Union within the 7th Framework Programme under Grant Agreement No. 312139 is gratefully acknowledged

www.killspill.eu

